

DANTE CERTIFICATION LEVEL 3

Introduction

Certification ensures a consistent set of methods and knowledge in the industry.

Tells others you have the base knowledge and skills to implement Dante networks.

Use the Dante Certification logos to promote your skill on social media and other promotional materials.

Understanding Large Scale & Converged Networks

- How to Work with an IT Department
- Understand IT Best Practices and Why They Exist
- Perspective on Dante Domain Manager

Network Concepts for Design, Ops & Troubleshooting

- Packet Travel on a Network and Routing
- Building Robust Network Architecture
- Network Optimization Concepts

Topics for Today

Audinate | Bringing the IT revolution to AV

Topics for Today

ENHANCE	Core IP Settings IP Address DNS DHCP/Link Local	s, Subnet Mask, Gateway/Router, LAN Range Domain Name Service Automatic Address Settings
	TCP/UDP Unicast, Multicast and Broadcast QoS VLAN & Trunk Implications	<i>Transmission Methods Distribution Methods Quality of Service – Traffic Prioritization VLAN, Trunk, Tagged VLAN, STP, LAG</i>
NEW	Network Ports PTP Clocking ARP Layered Network Models Segmenting Broadcast Domain	Managing Simultaneous Connections Precision Time Protocol (PTP) Switching by MAC vs IP OSI and TCP Conceptual Models Managing the "Noise" in a Network

Design & Troubleshooting

Core IP Settings: IP Address, Subnet Mask, Gateway

• Devices on the Local Area Network (LAN) are contacted directly.

Core IP Settings: Gateway (Router)

- Devices on the Local Area Network (LAN) are contacted directly.
- Devices on the Wide Area Network (WAN) are reached through the router.

IP Address & Subnet Mask

Audinate | Bringing the IT revolution to AV

If the Destination is on the LAN:

Access the devices directly on the local network switches. The router is not involved in this connection.

Otherwise:

The destination IP address is passed to the Gateway (Router). Similar to dialing "O" for the operator.

Are these sought on the LAN or through the Gateway? 192.168.10.18 ... LAN 18.231.109.77 ... Gateway (WAN) 192.168.1.113 ... Gateway (WAN)

12

Subnet Mask Values 0, 255

Residential:255.255.255.0Dante Audio Default:255.255.0.0

DSL Static IPs: Corp Network: 255.255.255.<mark>248</mark> 255.255.<mark>252</mark>. 0

There are 10 types of people in the world:

those who understand binary, and those who don't.

Audinate | Bringing the IT revolution to AV

We call this "dotted-quad notation".

192.168.1.121100 0000..1010 1000.0000 0001.0000 1100

Dotted Quad Notation:192.168.1.12Value Range of Each Field:0 – 255 (8 bits)4 fields x 8 bits each:32-bit address

16

IP Address and Subnet Mask are 32-bit numbers. Subnet Mask defines significant binary digits.

This LAN range setting is commonly abbreviated: 192.168.1.12 /24

You can break the mask "mid-field": 192.168.0.12 /22

You can break the mask "mid-field": 192.168.26.12 /22

The Subnet Mask has a Length. A String of Binary 1's, then Binary 0's.

The Subnet Mask has a Length. A String of Binary 1's, then Binary 0's.

22

The Subnet Mask has a Length. A String of Binary 1's, then Binary 0's.

Core IP Settings: Subnet Mask Valid Values

Mask	Binary Value							Answers	
255	1	1	1	1	1	1	1	1	1
254	1	1	1	1	1	1	1	0	2
252	1	1	1	1	1	1	0	0	4
248	1	1	1	1	1	0	0	0	8
240	1	1	1	1	0	0	0	0	16
224	1	1	1	0	0	0	0	0	32
192	1	1	0	0	0	0	0	0	64
128	1	0	0	0	0	0	0	0	128
0	0	0	0	0	0	0	0	0	256

Audinate | Bringing the IT revolution to AV

Reserved LAN Ranges

Can the laptop connect to the server? http://192.168.0.251/

These are reserved for your LAN use.

Avoid these addresses – they often have meaning.

IP Address Range:	Common Uses	
<u> </u>	Network Identifier	
<u> 1</u>	Commonly Used For Router	
	or Network Infrastructure	
	Broadcast Address	

29

Are These Valid LAN Addresses?

192.168. 10. 0 ... No: Avoid 0 or 255 in last field.

Audinate | Bringing the IT revolution to AV

30

Are These Valid LAN Addresses?

192.168. 10. 0 ... No: Avoid 0 or 255 in last field. 10.255. 0. 15 ... Yes.

Are These Valid LAN Addresses?

192.168. 10. 0 ... No: Avoid 0 or 255 in last field.
10.255. 0. 15 ... Yes.
172. 26. 0. 1 ... Maybe: Could be Router.

Are These Valid LAN Addresses?

192.168.10.0 ... No: Avoid 0 or 255 in last field.
10.255.0.15 ... Yes.
172.26.0.1 ... Maybe: Could be Router.
192.169.150.11 ... No: Not in a LAN range.

DNS (Domain Name Service)

Topics for Today

ENHANCE	Core IP Settings IP A DNS DHCP/Link Local	ddress, Subnet Mask, Gateway/Router, LAN Range Domain Name Service Automatic Address Settings
	TCP/UDP Unicast, Multicast and Broad QoS VLAN & Trunk Implications	dcast Transmission Methods Distribution Methods Quality of Service – Traffic Prioritization VLAN, Trunk, Tagged VLAN, STP, LAG
NEW	Network Ports PTP Clocking ARP Layered Network Models Segmenting Broadcast Dom	Managing Simultaneous Connections Precision Time Protocol (PTP) Switching by MAC vs IP OSI and TCP Conceptual Models Managing the "Noise" in a Network

Design & Troubleshooting

DNS: Multi Layer Look-Up

If everything is run by IP Addresses, how do I get to a web site?

https://www.audinate.com/certify/

Protocol Server Domain Name or IP Address Folder/Request

If everything is run by IP Addresses, how do I get to a web site?

https://www.audinate.com/certify/

 \times

Internet P	rotocol Version 4 (TCP/IPv4) Properties
General	

You can get IP settings assigned automatically if your network supports this capability. Otherwise, you need to ask your network administrator for the appropriate IP settings.

Obtain an IP address automatically

Use the following IP addre	SS:
IP address:	192.168.0.64
Subnet mask:	255 . 255 . 255 . 0
Default gateway:	192.168.0.1

Obtain DNS server address automatically

Use the following DNS server addresses:										
Preferred DNS server: 192 . 168 . 0 . 7]		
Alternate DNS server:	8		8		8		8]		
Validate settings upon exit						A	ld <u>v</u> ar	nced		
		_					_			

DNS (Domain Name Service) Resolves names to IP Addresses

https://www.audinate.com/certify/

OK

Cancel

Х

Internet Protocol Version 4 (TCP/IPV4) Propertie	s
General	

You can get IP settings assigned automatically if your network supports this capability. Otherwise, you need to ask your network administrator for the appropriate IP settings.

Use the following IP address: —	
IP address:	192.168.0.64
S <u>u</u> bnet mask:	255.255.255.0
Default gateway:	192.168.0.1

Obtain DNS server address automatically

OUSe the following DNS server addresses:								
Preferred DNS server:	192.168.0.7							
<u>A</u> lternate DNS server:	8.8.8.8							
Validate settings upon exit	Ad <u>v</u> anced							
	OK Cancel							

DNS (Domain Name Service) Resolves names to IP Addresses

Obtain DNS server address automatically

• Use the following DNS server addresses:

Preferred DNS server:

Alternate DNS server:

42

ΔΔ

Internet Protocol Version 4 (TCP/IPv4)	Properties	×					
General							
You can get IP settings assigned auton this capability. Otherwise, you need to for the appropriate IP settings.	natically if your network supports ask your network administrator						
O <u>O</u> btain an IP address automatical	y						
• Use the following IP address:							
IP address:	192.168.0.64						
Subnet mask:	255.255.255.0						
Default gateway: 192 . 168 . 0 . 1							
Obtain DNS server address autom	natically						
• Use the following DNS server add	resses:						
Preferred DNS server:	192.168.0.1						
Alternate DNS server:							
Validate settings upon exit Ad <u>v</u> anced							
	OK Cancel						

Gateway & DNS Server can be the same address?

		-			

Default gateway:	192.168.0.1
Subnet mask:	255 . 255 . 255 . 0
IP address:	192.168.0.64
Use the following IP addre	ss:

Obtain DNS server address automatically

Use the following DNS server addresses:

Pret	ferred	DNS	server	:

192	168	0	•	1

Audinate | Bringing the IT revolution to AV

Audinate | Bringing the IT revolution to AV

A mixer used to require racks of external gear...

Typical Home Wireless Router:

Also Includes:

- DHCP Server
- VPN (Remote Login)
- DNS Resolution & Caching

47

DNS Resolution – Network Is Very Large

Domain Name Service

- DNS is like a phone book, resolving URLs (names) to IP Addresses
- There can be many DNS servers your system defines them by priority
- The process returns first answer it sees not a voting system.
- Localized devices cache the names of common sites for speed

DHCP and Link Local

Audinate | Bringing the IT revolution to AV

Topics for Today

58

ACE V	Core IP Settings IP A DNS DHCP/Link Local	Address, Subnet Mask, Gateway/Router, LAN Range Domain Name Service Automatic Address Settings
ENHAR	TCP/UDP Unicast, Multicast and Broa QoS VLAN & Trunk Implications	dcast Transmission Methods Distribution Methods Quality of Service – Traffic Prioritization VLAN, Trunk, Tagged VLAN, STP, LAG
NEW	Network Ports PTP Clocking ARP Layered Network Models Segmenting Broadcast Dom	Managing Simultaneous Connections Precision Time Protocol (PTP) Switching by MAC vs IP OSI and TCP Conceptual Models Managing the "Noise" in a Network

Design & Troubleshooting

Internet Protocol Version 4 (TCP/IPv4) Properties				
General				
You can get IP settings assigned automatically if your network supports this capability. Otherwise, you need to ask your network administrator for the appropriate IP settings.				
Obtain an IP address automatical	y			
• Use the following IP address:				
IP address:	192.168.0.64			
Subnet mask:	255.255.255.0			
Default gateway:	192.168.0.1			
Obtain DNS server address automatically				
Use the following DNS server addresses:				
Preferred DNS server:	192.168.0.1			
Alternate DNS server:				
Validate settings upon exit	Ad <u>v</u> anced			
	OK Cancel			

DHCP Automatically Assigns:

- IP Address Different on each device
- Subnet Mask
- Gateway
- DNS

The same on all devices

nternet Protocol Version 4 (TCP/IPv4) Properties X				
General				
You can get IP settings assigned automatically if your network supports this capability. Otherwise, you need to ask your network administrator for the appropriate IP settings.				
O Obtain an IP address automatical	у			
• Use the following IP address:				
IP address:	192.168.0.64			
Subnet mask:	255.255.255.0			
Default gateway:	192.168.0.1			
Obtain DNS server address automatically				
• Us <u>e</u> the following DNS server addr	'esses:			
Preferred DNS server:	192.168.0.1			
Alternate DNS server:	· · ·			
Validate settings upon exit Advanced				
	OK Cancel			

DHCP Settings:

IP Range:

IP addresses to hand out: 192.168.0. 100 to 192.168.0. 254

60

DHCP Lease Time: Configuration "Time to Live": e.g. – 24 hours

Audinate | Bringing the IT revolution to AV

IP	MAC	Expiration
.101	F7.51.32.CB.4F.21	2019-06-19 09:30

Audinate | Bringing the IT revolution to AV

IP	MAC	Expiration
.101	F7.51.32.CB.4F.21	2019-06-19 09:30
.102	44.DC.24.B4.11.96	2019-06-19 09:40

IP	MAC	Expiration
.101	F7.51.32.CB.4F.21	2019-06-19 09:30
.102	44.DC.24.B4.11.96	2019-06-19 09:40

Audinate | Bringing the IT revolution to AV

IP	MAC	Expiration
.101	F7.51.32.CB.4F.21	2019-06-19 09:30
.102	44.DC.24.B4.11.96	2019-06-19 09:40
.103	B3.55.E1.7C.BA.D3	2019-06-19 09:45

IP	MAC	Expiration
.101	F7.51.32.CB.4F.21	2019-06-19 09:30
.102	44.DC.24.B4.11.96	2019-06-19 09:40
.103	B3.55.E1.7C.BA.D3	2019-06-19 09:45

IP	MAC	Expiration
.101	F7.51.32.CB.4F.21	2019-06-19 09:30
.102	44.DC.24.B4.11.96	2019-06-19 09:40
.103	B3.55.E1.7C.BA.D3	2019-06-19 09:45

Audinate | Bringing the IT revolution to AV

IP	MAC	Expiration
.101	F7.51.32.CB.4F.21	2019-06-19 09:30
.102	44.DC.24.B4.11.96	2019-06-19 13:05
.103	B3.55.E1.7C.BA.D3	2019-06-19 09:45

IP	MAC	Expiration
.101	F7.51.32.CB.4F.21	2019-06-19 09:30
.102	44.DC.24.B4.11.96	2019-06-19 13:05
.103	B3.55.E1.7C.BA.D3	2019-06-19 09:45

IP	MAC	Expiration
.101	F7.51.32.CB.4F.21	2019-06-19 09:30
.102	44.DC.24.B4.11.96	2019-06-19 13:05
.103	B3.55.E1.7C.BA.D3	2019-06-19 09:45

71

74

What if there is no DHCP Server?

Most Devices Revert to "Link Local"

76

Internet Protocol Version 4 (TCP/IPv4)	Properties X			
General				
You can get IP settings assigned automatically if your network supports this capability. Otherwise, you need to ask your network administrator for the appropriate IP settings.				
O Obtain an IP address automatically				
• Use the following IP address:				
IP address:	192.168.0.64			
S <u>u</u> bnet mask:	255.255.255.0			
Default gateway:	192.168.0.1			
Obtain DNS server address autom	natically			
• Use the following DNS server addresses:				
Preferred DNS server:	192.168.0.1			
<u>A</u> lternate DNS server:				
Validate settings upon exit	Ad <u>v</u> anced			
	OK Cancel			

Link Local Automatically Assigns:

- IP Address
- Subnet Mask _____ 169.25

The goal is to allow devices to communicate on a LAN.

Link Local Does Not Deal With:

- Gateway
- DNS

If DHCP Looks Like This...

78

Link Local Looks Like This...

ARP Request: 169.254.51.137

Link Local Looks Like This...

ARP Response

Link Local Looks Like This...

ARP Request: 169.254.80.12

Link Local Looks Like This...

Link Local Looks Like This...

83

TCP vs UDP

Topics for Today

ICE	Core IP Settings IP Addres DNS DHCP/Link Local	ss, Subnet Mask, Gateway/Router, LAN Range Domain Name Service Automatic Address Settings
ENHAR	TCP/UDP Unicast, Multicast and Broadcast QoS VLAN & Trunk Implications	Transmission Methods Distribution Methods Quality of Service – Traffic Prioritization VLAN, Trunk, Tagged VLAN, STP, LAG
NEW	Network Ports PTP Clocking ARP Layered Network Models Segmenting Broadcast Domain	Managing Simultaneous Connections Precision Time Protocol (PTP) Switching by MAC vs IP OSI and TCP Conceptual Models Managing the "Noise" in a Network

Design & Troubleshooting

TCP vs UDP Traffic

- TCP traffic is like "Signature Required" mail The sender gets notification that the message was received.
- UDP traffic is like "First Class" mail *Place envelope in mailbox and trust it gets delivered.*

Does that mean UDP is less reliable?

No, it is a different tool for a different job.

TCP vs UDP Traffic

- TCP traffic is like "Signature Required" mail The sender gets notification that the message was received.
- TCP is appropriate for internet traffic where:
 - Communications are likely to be interrupted (internet),
 - Missing a packet invalidates data (ftp download) or
 - Timely delivery is a convenience, not a necessity.
- Problems with TCP for media:
 - If the packet was dropped, what is the time out on waiting for a confirmation?
 - Creates additional overhead, increasing likelihood of a problem.

TCP vs UDP Traffic

• UDP traffic is like "First Class" mail Place envelope in mailbox and trust it gets delivered.

- UDP is appropriate for internet traffic where:
 - Communications are not likely to be interrupted (LAN),
 - Missing a packet in sequences can be overcome (error correction) or
 - Timely delivery or low overhead is key
- Devices can track network performance:
 - Managed switches and endpoints can log unhandled or missing packets

89

90

🐼 Yamaha Audio Network Monitor	
Eile Setup About	
(*) YAMAHA	
Local Area Connection	Snapshots Notifications History Dante Controller
Device Details	
Label: Name:CL3 Comment: Manufacturer:Yamaha Corporation MAC address:00:1d:c1:06:17:a6 Snapshot:On	B Locked Pull-up/down Mute Primary Secondary 48kHz 32bit 250us NONE 10 10 10 Utilization Errors 0 Clear 0 Rx 55Mbps 0 Clear 0
Dante Controller	
Sort by: SWP1-16 (C879B7)	
SWP1-16 (C879B7) [17]	
Danie MY16 (Y021-MainHall-Amp-StL-TX5n)	
Danie MY16 (Y022-MainHall-Amp-StR-TX5n)	
Danie MTX5-D (Y030-DistAud-DSP-EC1-MTX5D)	
Dante Ris-D (Y00A-MainHall-IO-StgL-Ri8D)	
Dante: CL3 (Y001-MainHall-Mixer-FoH-CL3)	
Danie MY16-2 (Y001-Yamaha-CL3-MY16)	

Festival System Profile

<u>FoH Position</u> (2) Yamaha CL5 Mixing Consoles *Band A & Band B*

Monitor Position (2) Yamaha CL5 Mixing Consoles Band A & Band B

Production Desk Yamaha CL1 Mixing Consoles MC Mic, BGM, Quick Routing

<u>128 Stage Inputs</u> (4) RIO3224-D Band A & Band B Split Wireless Mic Systems

<u>Main PA</u> Nexo STM Mains Yamaha NXAMP Amps

Unicast, Multicast and Broadcast

Topics for Today

I CE	Core IP Settings IP A DNS DHCP/Link Local	ddress, Subnet Mask, Gateway/Router, LAN Range Domain Name Service Automatic Address Settings
ENHAR	TCP/UDP Unicast, Multicast and Broa QoS VLAN & Trunk Implications	dcast Transmission Methods Distribution Methods Quality of Service – Traffic Prioritization VLAN, Trunk, Tagged VLAN, STP, LAG
NEW	Network Ports PTP Clocking ARP Layered Network Models Segmenting Broadcast Dom	Managing Simultaneous Connections Precision Time Protocol (PTP) Switching by MAC vs IP OSI and TCP Conceptual Models Managing the "Noise" in a Network

Design & Troubleshooting

Unicast is like First Class Mail One-to-One Transmission, Can Be Routed

98

Unicast is like First Class Mail One-to-One Transmission, Can Be Routed

Broadcast is like Junk Mail by Zip Code One-to-All Transmission, Does Not Cross a Router

100

Broadcast is like Junk Mail by Zip Code One-to-All Transmission, Does Not Cross a Router

Multicast w/ IGMP is like a Magazine Subscription One-to-Many Transmission, Does Not Cross Router (By Default)

102

Multicast w/ IGMP is like a Magazine Subscription One-to-Many Transmission, Does Not Cross Router (By Default)

- Subscription is made to a Multicast IP Address 224.0.0.0 /4, also known as 224.0.0.0 through 239.255.255.255
- IGMP Snooping is the bit that manages the subscriptions:
 All switches would have IGMP Snooping Engaged
 - There should only be one IGMP Querier on the network
- IGMP Snooping v2 or v3:
 - Dante will work at v2 or v3.
 - Some other systems are still testing with v3 compatibility.

Multicast w/ IGMP is like a Magazine Subscription One-to-Many Transmission, Does Not Cross Router (By Default)

Multicast w/o IGMP is like a Magazine Subscription One-to-Many Transmission, Does Not Cross Router (By Default)

Distribution: Unicast, Multicast and Broadcast

- What if multiple devices transmit to the same IP address? Devices subscribing to that stream will receive all contributions.
- Macintosh running DVS might have problems with IGMP. Luminex and Yamaha have a mode that overrides the "Time To Live". Others can solve this by manual registration or forward all multicast.
- Can we mix brands of switches with IGMP Snooping? Mostly, yes. But sticking with a brand will more likely auto-negotiate an IGMP Snooping querier and offer consistent management screens.

Distribution: Unicast, Multicast and Broadcast

• What if a network involves switches with and without IGMP? Switches with IGMP Snooping will control Multicast distribution. Switches without IGMP Snooping will flood Multicast that enters it.

Distribution: Unicast, Multicast and Broadcast

• What if a network involves switches with and without IGMP? Switches with IGMP Snooping will control Multicast distribution. Switches without IGMP Snooping will flood Multicast that enters it.

Distribution: Unicast, Multicast and Broadcast

• What if a network involves switches with and without IGMP? Switches with IGMP Snooping will control Multicast distribution. Switches without IGMP Snooping will flood Multicast that enters it.

Distribution: Unicast, Multicast and Broadcast

• What if a network involves switches with and without IGMP? Switches with IGMP Snooping will control Multicast distribution. Switches without IGMP Snooping will flood Multicast that enters it.

K

Distribution: Unicast, Multicast and Broadcast

- What if a network involves switches with and without IGMP? Switches with IGMP Snooping will control Multicast distribution. Switches without IGMP Snooping will flood Multicast that enters it.
- Does multicast cross a router? By default, no. But where there is a will, there is a way.
- How much multicast can a network handle? Watch the CPU load on your switch. But generally, it can move a lot...

- If many data packets need to go out a single port, they queue up.
- QoS allows us to prioritize some packets, similar to priority status on an airline.

- If many data packets need to go out a single port, they queue up.
- QoS allows us to prioritize some packets, similar to priority status on an airline.

117

- If many data packets need to go out a single port, they queue up.
- QoS allows us to prioritize some packets, similar to priority status on an airline.

- If many data packets need to go out a single port, they queue up.
- QoS allows us to prioritize some packets, similar to priority status on an airline.
- Prioritizing some means de-prioritizing others.

121

🖆 💶 🗖 🗶									
\leftarrow \rightarrow C (i) 192.168.124.3/csdfa71012/home.htm P \bigstar [I] \blacktriangleright :									
Small Business cisco SG300-10P	10-Port Gi	gabit PoE	Manage	d Switch	cisco	Language: Enç	glish	▼ Logout A	vbout Help
Getting Started DSCP to Queue									
Administration	DSCD to Output	Tabla							
 Port Management 	Ingross DSCP	Output Ouous	Ingross DSCD	Output Oucus	Ingross DSCB	Output Oucus	Ingross DSCB	Output Ououo	
 Smartport 	0 (BE)		16 (CS2)		32 (CS4)		48 (CS6)		
 VLAN Management 	1	1 🗸	17	1 •	33	1 •	49	1 •	
 Spanning Tree 	2	1 7	18 (AF21)	1 -	34 (AF41)	1 -	50	1 •	
MAC Address Tables	3	1 7	19	1 •	35	1 •	51	1 •	
Multicast	4	1 7	20 (AF22)	1 7	36 (AF42)	1 🔻	52	1 7	
 IP Configuration 	5	1 •	21	1 •	37	1 •	53	1 •	
 Security 	6	1 •	22 (AF23)	1 •	38 (AF43)	1 •	54	1 •	
Access Control	7	1 •	23	1 •	39	1 •	55	1 •	
Quality of Service	8 (CS1)	2 🔻	24 (CS3)	1 •	40 (CS5)	1 •	56 (CS7)	4 🔻	
 General OoS Properties 	9	1 •	25	1 •	41	1 •	57	1 •	
Queue	10 (AF11)	1 •	26 (AF31)	1 •	42	1 •	58	1 •	
CoS/802.1p to Queue	11	1 •	27	1 •	43	1 •	59	1 •	
DSCP to Queue	12 (AF12)	1 🔻	28 (AF32)	1 🔻	44	1 🔻	60	1 🔻	
Eanowioth Egress Shaping Per Queue	13	1 •	29	1 🔻	45	1 •	61	1 •	
VLAN Ingress Rate Limit	14 (AF13)	1 🔻	30 (AF33)	1 🔻	46 (EF)	3 🔻	62	1 🔻	
TCP Congestion Avoidance	15	1 •	31	1 •	47	1 🔻	63	1 🔻	
QoS Basic Mode	Apply	Cancel	Restore De	faults					
Qos Advanced Mode Qos Statistics									
Cueue 1 has the lowest priority, queue 4 has the highest priority. SNMP									
© 2010-2013 Cisco Systems, Inc. All Rights Reserved.									

122

ditte SG300-10P 10-Port Gigal ×								-	
← → C 🛈 192.168.124	.3/csdfa71012/hon	ne.htm						부 ☆ 🖸	
Small Business cisco SG300-10	P 10-Port G	igabit PoE	E Manage	d Switch	cisco	Language: En	glish	▼ Logout Al	bout H
Getting Started Status and Statistics	DSCP to Q	ueue							
 Administration 	DSCP to Queue Table								
 Port Management 	Ingress DSCP	Output Queue	Ingress DSCP	Output Queue	Ingress DSCP	Output Queue	Ingress DSCP	Output Queue	
 Smartport 	0 (BE)	1.	16 (CS2)	1 .	32 (CS4)	1 .	48 (CS6)	1 .	
 VLAN Management 	1	1.	17	1.	33	1 .	49	1	
Spanning Tree	2	1 .	18 (AF21)	1.	34 (AF41)	1 .	50	1	
MAC Address Tables	3	1.	19	11.7	35	1.	51	1.	
 Multicast 			20 (4522)		36 (AE42)		52		
 IP Configuration 	5		20 (1122)		27		52		
 Security 	6		21		37 29 (AE42)		54		
 Access Control 			22 (11 23)	100000	30 (11 43)		- Andrews	Bassail .	

Queue 1 has the lowest priority, queue 4 has the highest priority.

DSCP to Queue Bandwidth Egress Shaping Per Queue VLAN Ingress Rate Limit TCP Congestion Avoidance QoS Basic Mode QoS Advanced Mode	12 (AF12) 13	1 •	28 (AF32) 29	1 •	44 45	1 V 1 V	60 61	1 v	
	14 (AF13)	1	30 (AF33)	1 •	46 (EF)	3 🔻	62	1 •	
	15 Apply	Cancel	31 Restore I	_1 ▼ Defaults	47	1 •	63	1	
QoS Statistics SNMP	Queue 1 has th	e lowest priority	r, queue 4 has the h	nighest priority					
© 2010-2013 Cisco Systems, Inc. All Rights Reserved.									

- QoS (e.g. Diffserv) is Class Based Specify what is important Timing is relative Easy to implement – you can mix switches with and without QoS
- Alternative is Reservation Based

Specify how much, how often – then decide if it is possible Timing is absolute Complex to implement – reservations must be present the whole way or no link

124

- Neither is magic they do not generate additional bandwidth The best QoS is more bandwidth Prioritizing some traffic means de-prioritizing others "If everyone is important, then no one is."
- QoS can help when... Running a converged network. Links are approaching 70% saturation or more. Using slower (100Mbit) links.
- When using QoS, use "Strict Priority" Strict Priority always serves the most important class Weighted Round Robin serves queues by weighted averages Shaped Round Robin serves by statistical analysis

2008 - CobraNet

/128

CobraNet[®]

VLANs and Trunk Implications

Topics for Today

ACE V	Core IP Settings IP A DNS DHCP/Link Local	ddress, Subnet Mask, Gateway/Router, LAN Range Domain Name Service Automatic Address Settings
ENHAR	TCP/UDP Unicast, Multicast and Broa QoS VLAN & Trunk Implications	dcast Transmission Methods Distribution Methods Quality of Service – Traffic Prioritization VLAN, Trunk, Tagged VLAN, STP, LAG
NEW	Network Ports PTP Clocking ARP Layered Network Models Segmenting Broadcast Dom	Managing Simultaneous Connections Precision Time Protocol (PTP) Switching by MAC vs IP OSI and TCP Conceptual Models Managing the "Noise" in a Network

Design & Troubleshooting

What is a LAN?

What is a LAN?

A VLAN simulates isolated networks in one switch

You do not have to offer the same number of ports per VLAN – you can assign the quantity you need.

What is a LAN?

"Non-Blocking Architecture" means the *switch* is not the bandwidth bottleneck – the *port/cable* is.

20 ports x 1 Gbit x 2 Directions = 40 Gbit Backplane

139

A Trunk Line is a link Between Switches

140

A Trunk Line is a link Between Switches

STP Prevents "Loops" in the Network

142

STP Prevents "Loops" in the Network

STP Prevents "Loops" in the Network

144

STP Prevents "Loops" in the Network

This Endless Loop is Called a "Broadcast Storm"

Audinate | Bringing the IT revolution to AV

/145

Spanning Tree Protocol (STP)

STP Creates a "Dormant Link"

Audinate | Bringing the IT revolution to AV

147

STP Can Be a Form of Redundancy

Link Aggregation Group Solves the Loop Problem

Link Aggregation Group Solves the Loop Problem

150

Link Aggregation Group Solves the Loop Problem

151

Can we do this?

No – STP is not "VLAN aware".

Create a Trunk with Tagged VLANs

Create a Trunk with Tagged VLANs

Create a Trunk with Tagged VLANs

The "Untagged" VLAN on a Trunk

Combine Ideas – a LAG of Trunk Lines

Network Ports: *https://www.audinate.com:*<u>443</u>

Topics for Today

160

ENHANCE	Core IP Settings IP A DNS DHCP/Link Local	ddress, Subnet Mask, Gateway/Router, LAN Range Domain Name Service Automatic Address Settings
	TCP/UDP Unicast, Multicast and Broa QoS VLAN & Trunk Implications	dcast Transmission Methods Distribution Methods Quality of Service – Traffic Prioritization VLAN, Trunk, Tagged VLAN, STP, LAG
NEW	Network Ports PTP Clocking ARP Layered Network Models Segmenting Broadcast Dom	Managing Simultaneous Connections Precision Time Protocol (PTP) Switching by MAC vs IP OSI and TCP Conceptual Models Managing the "Noise" in a Network

Design & Troubleshooting

HOW DO WE MANAGE SO MANY CONNECTIONS AT ONCE?

161

User asked for: http://www.youtube.com/ I'll look up it's internet IP Address on DNS. (Domain Name Service)

163

/165

166

167

- The same process repeats for every application
- Each application has its own unique Internal (port) address

Application	Local Port	Remote IP	Remote Port
Youtube	TCP 53618	172.217.23.14	TCP 443
Facebook	TCP 53653	31.13.92.36	TCP 443
Outlook	TCP 67123	105.40.225.204	TCP 389
Spotify	TCP 57453	194.132.198.198	TCP 443

- The same process repeats for every application
- Each application has its own unique Internal (port) address
- Dante networks do this as well.

Application	Local Port	Remote IP	Remote Port
PTP	UDP 53618	224.0.1.129	UDP 319
Audio Flow	UDP 14340	192.168.1.56	UDP 14390
Audio Flow	UDP 14350	192.168.1.60	UDP 14367
Gain control	UDP 50135	192.168.1.56	UDP 50231

Advanced Clocking

Audinate Confidential And Proprietary

Topics for Today

171

ENHANCE	Core IP Settings IP Ac DNS DHCP/Link Local	ddress, Subnet Mask, Gateway/Router, LAN Range Domain Name Service Automatic Address Settings
	TCP/UDP Unicast, Multicast and Broad QoS VLAN & Trunk Implications	cast Transmission Methods Distribution Methods Quality of Service – Traffic Prioritization VLAN, Trunk, Tagged VLAN, STP, LAG
NEW	Network Ports PTP Clocking ARP Layered Network Models Segmenting Broadcast Doma	Managing Simultaneous Connections Precision Time Protocol (PTP) Switching by MAC vs IP OSI and TCP Conceptual Models Managing the "Noise" in a Network

Design & Troubleshooting

While getting trained for a new show...

173

What is a sample rate?

Basics of Sample Rate & Clock

Basics of Sample Rate & Clock

Talking to an engineer fresh off touring with Glen Campbell...

I enjoy working with the M7CL and PM5D. They are great <u>analog</u> consoles.

178

Dante means your whole system is connected digitally.

This is often the first time people work with a digitally-connected system.

Troubleshooting: Fear and lack of knowledge cause people to blame clock quickly.

Capture

#1

Capture Transmit #2 #1

183

48KHz Internal

Clock: In Sync vs In Phase

OK: Digital Connection, No Sync

Clock: In Sync vs In Phase

OK: Digital Connection, No Sync

Audinate | Bringing the IT revolution to AV

/186

Clock: In Sync vs In Phase

187

Problem: No Sync – Buffer Overrun/Underrun

Clock: In Sync vs In Phase

188

Problem: No Sync – Buffer Overrun/Underrun

Clock: Propagation Delay

Word Clock Variance (Propagation Delay)

Clock: Propagation Delay

Word Clock Variance (Propagation Delay)

Audinate | Bringing the IT revolution to AV

190

Clock: Propagation Delay

Word Clock Variance (Propagation Delay)

Audinate | Bringing the IT revolution to AV

/191

Clock: Buffered Distribution

Clock: Central Clock

Clock: Cyclical Reference vs Positional Pointer

Is word clock like SMPTE time code?

SMPTE time code *(face of the clock)*

Word Clock and SMPTE Time Code must be "resolved", meaning they are related and align, but they are not describing the same thing. Word Clock —— (pendulum)

194

Dante Simplifies Configuration. Not Just In Sync, but In Phase.

• Automated Election Criteria:

Preferred Master Chasing External Clock "Best Clock" (chipset) Lowest MAC Address

User Intervention

Automatic Process

Dante Word Clock Master Election

👱 Dante Controller - Network View									x
<u>F</u> ile <u>D</u> evice <u>V</u> iew <u>H</u> elp									
🗉 🗲 💼 🗲 🔤		Master Clock: Y001-MainHall-Mixer-FoH-CL3					0		
Routing Device Info Clock Status Network Status Events									
Device Name	Sync	Mute	Clock Source	Primary Status	Secondary Status	AES67 Status	Preferred Master	Enable Sync To External	
Y001-MainHall-Mixer-FoH-CL3			Dante	Master	Master	N/A	V		-
Y001-MainHall-Mixer-FoH-Slot1			Dante	Slave	Passive	Master			
Y00A-MainHall-IO-StgL-Ri8D			Dante	Slave	Passive	N/A		N/A	
Y021-MainHall-Amp-StL-TX5n			Dante	Slave	Passive	N/A			
Y022-MainHall-Amp-StR-TX5n			Dante	Slave	Passive	N/A			
Y030-DistAud-DSP-EC1-MTX5D			Dante	Slave	Passive	N/A			
Y036-DistAud-Amp-EC1-XMV4280D			Dante	Slave	Passive	N/A			-
P: Multicast Bandwidth: 0 bps Event Log: Clock Status Monitor:									

• Automated Election Criteria:

Preferred Master Chasing External Clock "Best Clock" (chipset) Lowest MAC Address

User Intervention

Automatic Process

- Synchronize "Time of Day" to sub-microsecond accuracy.
- Derive the desired audio sample rate or video frame rate.

How Does a Network Synchronize Word Clocks?

This is more like a format called LJ I2S

Clock: Buffered Distribution

200

Clock: Central Clock

201

Clock: Testing Accuracy – Central Clock

Clock: Testing Accuracy – Central Clock

Clock: Testing Accuracy – AES3

Clock: Testing Accuracy – AES3

One Switch

Tek ...m... Trig'd M Pos: -10.00,us TRIGGER Tek m 🖬 Trigʻd M Pos: -10.00,us TRIGGER Туре Type Edge Edge Source Source CH1 CH1 Slope Slope 1.1.1.1.1. Rising Rising 24 2+ Mode Mode Normal Normal Coupling Coupling DC DC M 2.50,0s CH1 / 800mV CH1 1.00V M 2.50 Jus CH1 / 800mV CH1 1.00V CH2 1.00V CH2 1.00V 7-May-13 17:27 48.0004kHz 7-May-13 17:29 48.0004kHz

Two Switches

Audinate | Bringing the IT revolution to AV

<u>/210</u>

One Switch

Two Switches

213

PTP: Synchronizing Time

- The idea of distributing time over a network started with British Railways
- Trains had a schedule arrive/departure times.
- Stations on the route needed to agree on what time it was, so trains would be "on time".

PTP: Synchronizing Time

Sync (Set Time) - Multicast

Ref 1435: 2019 June 12 09:00:01.000325364

Follower Sets Clock

Follow-Up (Set Speed) - Multicast

"Ref 1435: 2019 June 12 09:00:01.000326789" Follower Adjusts Speed: Compare <u>elapsed</u> time from master and local clock, then slow or speed up to match.

PTP: Sync (Time) and Follow-ups (Speed)

PTP: Sync (Time) and Follow-ups (Speed)

Wait, what about propagation delay?

219

PTP: Synchronizing Time

The watch on the train continued keeping time. Network packets don't.

220

Clock followers send delay requests to the clock master, to which the clock master responds.

Delay Request – Unicast

Delay Req 1066: 09:00:02.00567283

Delay Response - Unicast

Delay Response 1066: Received: 09:00:02.001325745 Responded: 09:00:02.008564367 Clock follower knows Tx & Rx timestamps of request & response, mathematically averages to pinpoint network traversal times.
Clock: Testing Accuracy – Dante

One Switch

Two Switches

222

PTP Clocking at the Late Late Show (CBS)

ARP – Address Resolution Protocol

Topics for Today

228

ENHANCE	Core IP Settings IP A DNS DHCP/Link Local	ddress, Subnet Mask, Gateway/Router, LAN Range Domain Name Service Automatic Address Settings
	TCP/UDP Unicast, Multicast and Broad QoS VLAN & Trunk Implications	dcast Transmission Methods Distribution Methods Quality of Service – Traffic Prioritization VLAN, Trunk, Tagged VLAN, STP, LAG
NEW	Network Ports PTP Clocking ARP Layered Network Models Segmenting Broadcast Dom	Managing Simultaneous Connections Precision Time Protocol (PTP) Switching by MAC vs IP OSI and TCP Conceptual Models Managing the "Noise" in a Network

Design & Troubleshooting

• Devices use ARP to match MAC to IP Address (in their broadcast domain)

- If a device doesn't know the MAC address of the target IP address:

 It issues an ARP "whohas" message is issued as a broadcast
 The device with that IP replies in unicast
 The sender will remember that correlation as will switches.
- So, an ARP message "glues" Layer 2 and 3 together.

SENDING AND RECEIVING UNICAST

Layered Network Models & Encapsulation

Topics for Today

232

ENHANCE	Core IP Settings IP A DNS DHCP/Link Local	ddress, Subnet Mask, Gateway/Router, LAN Range Domain Name Service Automatic Address Settings
	TCP/UDP Unicast, Multicast and Broad QoS VLAN & Trunk Implications	dcast Transmission Methods Distribution Methods Quality of Service – Traffic Prioritization VLAN, Trunk, Tagged VLAN, STP, LAG
NEW	Network Ports PTP Clocking ARP Layered Network Models Segmenting Broadcast Dom	Managing Simultaneous Connections Precision Time Protocol (PTP) Switching by MAC vs IP OSI and TCP Conceptual Models Managing the "Noise" in a Network

Design & Troubleshooting

OSI Model

- 7: Application
- 6: Presentation
- 5: Session
- 4: Transport
- 3: Network

1: Physical

Layered Models are:

- Conceptual, not concrete Concepts tend to last longer than concrete models. Hardware independent, doesn't always reflect real life.
- Helpful in designing or troubleshooting An unplugged cable is a "Layer 1" problem. I'm looking for a "Layer 3" network switch.
- Not required skill to set up a simple Dante network But it is on the Dante Level 3 Certification test.

1013 6 1

OSI Model

237

If you are a designing a computer application, you probably care about the higher levels of the model.

If you are a network engineer, you probably care more about the lower levels of the model.

239

OSI Model

7: Application

4: Transport

2: Datalink

1: Physical

Neither model is perfect. But if we focus on the bottom three layers of the OSI model, we'll get what we need.

TCP/IP Model

Application

Transport

Internet Layer

Network Access

Layer 1 refers to the cable and the electrical signal on it.

- Is it plugged in?
- Is the cable broken, problem with impedance, etc?
- Is there electro-magnetic interference on copper?
- Is there light or dirty ends on the fiber optic cable?

OSI Model

(Lowest Three Layers)

3:

2:

Layer 1 refers to the cable and the electrical signal on it.

- Is it plugged in?
- Is the cable broken, problem with impedance, etc?
- Is there electro-magnetic interference on copper?
- Is there light or dirty ends on the fiber optic cable?

1: Physical

243

Segmenting the Broadcast Domain

Layer 3 = Router Passing data from one LAN to another

Unicast only No Multicast passes (there are workarounds) No Broadcast passes

2: Datalink

Layer 2 = Switch Passing data within a LAN

Unicast, Multicast, Broadcast allowed

A Meeting Space w/ Airwalls is analogous to VLANs in a Network...

BROADCAST TRANSMISSION

BROADCAST TRAFFIC

Surely there is a better way to deal with this?

250

SEGMENTING BROADCAST DOMAINS – GOOD PRACTICE

252

Design & Troubleshooting

Audinate Confidential And Proprietary

DEFINING RESOURCE REQUIREMENTS

- Any project in anything requires this phase of planning
- Required resources for a Dante network:
 - ✓ Enough Transmit flows to serve all receivers
 - ✓ Enough Receive flows available on devices connecting to transmitters
 - ✓ Enough Bandwidth to carry flows
 - ✓ Unblocked logical connections ("wire" is not cut, and is "plugged in")

TROUBLESHOOTING - DANTE "PORT" ADDRESSES

• Traffic used by Dante is as follows:

mDNS224.0.0.251:5353Control and Monitoring224.0.0.230 - 232:8700-8708PTP224.0.1.129 - 132:319-320Multicast Audio239.255.0.0/16:4321Unicast AudioRX Unicast IP:14336 - 14600AES67 Multicast Audio239.XX.0.0/16:5004

- All Dante traffic is UDP/IP
- This means that if any traffic to/from these ports and IP addresses is blocked, then the "wire" carrying that particular service can be considered "cut!"

NETWORK PORTS – 2 WAYS TO CUT THE WIRE

- The Network Switch Fabric can have ACLs applied (Access Control Lists)
 - $\circ~$ ACLs are very powerful tools for filtering traffic in the network
 - Many advanced IT Networks will be applying ACLs
 - Normally IT departments will not wish to reveal or discuss these (potential security concern)
- It is reasonable to expect that the required service be provisioned with the required resources – at a Port level this is defined in previous slides

Device doesn't show up in Dante Controller

- Is it connected/on?
- Is it placed in the same VLAN?

257

Is multicast (mDNS) blocked?

Clock is giving lock/unlock messages

- Possible blocked multicast.
- Check the clock histogram in Dante controller to confirm drift.
- Dante clocks can run for a surprising amount of time before falling out of sync badly enough to affect audio... hours
- Unicast Delay Requests can be a quick tool to test if this is the case

COMMON SYMPTOMS AND CAUSES

Device Name shows in Dante Controller no + visible to expand channels & status view missing Data

- Is the device in same subnet?
- Check Firewall settings on your computer's Operating System
Multiple Clocks Masters

- If only on primary only, devices "cannot hear" multicast sync messages from other devices – assume they are master. Look for blocked multicast.
- If primary is fine but secondary shows multiple masters, may simply be a broken trunk line.

- Networking is about making a lot of parts of an unique "jigsaw" work together
- This course explains the requirements and performance of the "Dante piece" of the jigsaw
- Remember an IT department have to make many pieces fit together – remain patient, it can and will be made to fit together nicely.

Next Steps

Audinate Confidential And Proprietary

TAKE THE LEVEL 3 TEST

http://www.audinate.com/certify

- Create an Audinate account if you don't have one
- Login to your account
- Take Level 3 test
- Certificate is automatically generated

Thank You

